Neural Correlates of the Conscious Perception of Visual Location Lie Outside Visual Cortex
Abstract
When perception differs from the physical stimulus, as it does for visual illusions and binocular rivalry, the opportunity arises to localize where perception emerges in the visual processing hierarchy. Representations prior to that stage differ from the eventual conscious percept even though they provide input to it. Here, we investigate where and how a remarkable misperception of position emerges in the brain. This "double-drift" illusion causes a dramatic mismatch between retinal and perceived location, producing a perceived motion path that can differ from its physical path by 45 degrees or more. The deviations in the perceived trajectory can accumulate over at least a second, whereas other motion-induced position shifts accumulate over 80-100 ms before saturating. Using fMRI and multivariate pattern analysis, we find that the illusory path does not share activity patterns with a matched physical path in any early visual areas. In contrast, a whole-brain searchlight analysis reveals a shared representation in anterior regions of the brain. These higher-order areas would have the longer time constants required to accumulate the small moment-to-moment position offsets that presumably originate in early visual cortical areas and then transform these sensory inputs into a final conscious percept. The dissociation between perception and the activity in early sensory cortex suggests that consciously perceived position does not emerge in what is traditionally regarded as the visual system but instead emerges at a higher level.
Type
Publication
Curr Biol